#include "includes.h" // 采集次数 #define SAMPLE_COUNT (20) // 通过界面请求采集的标志 volatile uint8_t Config_Sample_Request = 0; volatile uint8_t Config_Vacuum_Request = 0; // 得到采集数据的通知 volatile uint8_t GPRS_semSampled = 0; // 通知采集的信号量 SemaphoreHandle_t Sample_Semaphore = NULL; // 二值信号量句柄 // 通知充装匹配的信号量 SemaphoreHandle_t Match_Semaphore = NULL; // 二值信号量句柄 // 当前采集阶段 volatile uint8_t Sample_phase = 0; // 采集是否忙 uint32_t Sample_Busy() { return (Sample_phase != 0); } // 通知采集 void Sample_Notify() { if(!Sample_Busy()) { // 发送消息给任务 xSemaphoreGive(Sample_Semaphore); } } // 通知采集 void Sample_NotifyFromISR() { BaseType_t xHigherPriorityTaskWoken; if(!Sample_Busy()) { // 发送消息给任务 xSemaphoreGiveFromISR(Sample_Semaphore, &xHigherPriorityTaskWoken); } } // 处理泄露报警唤醒 void Leak_Handler(void) { if(Wakeup_Sleeping) { SysTick->CTRL |= (SysTick_CTRL_ENABLE_Msk | SysTick_CTRL_TICKINT_Msk); delay_ms(10); Vcc_Enable(); delay_ms(40); Wakeup_Sleeping = 0; printf("\n\nWake up by LEAK.\n\n"); } // 采集数据 Sample_NotifyFromISR(); } // 采集一个通道:总共采集20次,取中间10次的平均值 uint32_t Sample_ChannelOne(uint32_t channel) { uint32_t i; uint32_t adc[SAMPLE_COUNT]; LL_ADC_REG_SetSequencerRanks(ADC1, LL_ADC_REG_RANK_1, channel); for(i = 0; i < SAMPLE_COUNT; i++) { LL_ADC_REG_StartConversion(ADC1); while(LL_ADC_REG_IsConversionOngoing(ADC1)); adc[i] = LL_ADC_REG_ReadConversionData12(ADC1); } sort(adc, SAMPLE_COUNT); adc[0] = 0; for(i = 0; i < (SAMPLE_COUNT / 2); i++) adc[0] += adc[SAMPLE_COUNT / 4 + i]; i = adc[0] / (SAMPLE_COUNT / 2); printf("\nchannel %d adc: %d, volt: %dmV\n", channel, i, i * 3000 / 4095); return i; } void Sample_Init() { LL_GPIO_InitTypeDef GPIO_InitStruct = {0}; LL_EXTI_InitTypeDef EXTI_InitStruct = {0}; LL_AHB2_GRP1_EnableClock(LL_AHB2_GRP1_PERIPH_GPIOA); /**ADC1 GPIO Configuration PA0 ------> ADC1_IN5(AD5) PA1 ------> ADC1_IN6 (AD6) PA5 ------> ADC1_IN10 (AD10) PA6 ------> ADC1_IN11 (AD11) PA7 ------> ADC1_IN12 (AD12) */ GPIO_InitStruct.Pin = LL_GPIO_PIN_0|LL_GPIO_PIN_1 |LL_GPIO_PIN_5|LL_GPIO_PIN_6|LL_GPIO_PIN_7; GPIO_InitStruct.Mode = LL_GPIO_MODE_ANALOG; GPIO_InitStruct.Pull = LL_GPIO_PULL_NO; LL_GPIO_Init(GPIOA, &GPIO_InitStruct); LL_AHB2_GRP1_EnableClock(LL_AHB2_GRP1_PERIPH_GPIOB); /**ADC1 GPIO Configuration PB0 ------> ADC1_IN15(AD_BAT) */ GPIO_InitStruct.Pin = LL_GPIO_PIN_0; GPIO_InitStruct.Mode = LL_GPIO_MODE_ANALOG; GPIO_InitStruct.Pull = LL_GPIO_PULL_NO; LL_GPIO_Init(GPIOB, &GPIO_InitStruct); LL_AHB2_GRP1_EnableClock(LL_AHB2_GRP1_PERIPH_GPIOC); /**ADC1 GPIO Configuration PC0 ------> ADC1_IN1(AD1) PC1 ------> ADC1_IN2(AD2) PC2 ------> ADC1_IN3(AD3) PC3 ------> ADC1_IN4(AD4) */ GPIO_InitStruct.Pin = LL_GPIO_PIN_0|LL_GPIO_PIN_1|LL_GPIO_PIN_2|LL_GPIO_PIN_3; GPIO_InitStruct.Mode = LL_GPIO_MODE_ANALOG; GPIO_InitStruct.Pull = LL_GPIO_PULL_NO; LL_GPIO_Init(GPIOC, &GPIO_InitStruct); // 泄露报警引脚 LL_AHB2_GRP1_EnableClock(LL_AHB2_GRP1_PERIPH_GPIOE); /**/ LL_SYSCFG_SetEXTISource(LL_SYSCFG_EXTI_PORTE, LL_SYSCFG_EXTI_LINE8); // 创建信号量 if(Sample_Semaphore == NULL) Sample_Semaphore = xSemaphoreCreateBinary(); if(Match_Semaphore == NULL) Match_Semaphore = xSemaphoreCreateBinary(); /**/ EXTI_InitStruct.Line_0_31 = LL_EXTI_LINE_8; EXTI_InitStruct.Line_32_63 = LL_EXTI_LINE_NONE; EXTI_InitStruct.LineCommand = ENABLE; EXTI_InitStruct.Mode = LL_EXTI_MODE_IT; EXTI_InitStruct.Trigger = LL_EXTI_TRIGGER_RISING_FALLING; LL_EXTI_Init(&EXTI_InitStruct); /**/ LL_GPIO_SetPinPull(GPIOE, LL_GPIO_PIN_8, LL_GPIO_PULL_DOWN); /**/ LL_GPIO_SetPinMode(GPIOE, LL_GPIO_PIN_8, LL_GPIO_MODE_INPUT); } void Sample_Open() { uint32_t vrefint_cal = *((volatile uint16_t *)(0x1fff75aa)); LL_ADC_InitTypeDef ADC_InitStruct = {0}; LL_ADC_REG_InitTypeDef ADC_REG_InitStruct = {0}; LL_ADC_CommonInitTypeDef ADC_CommonInitStruct = {0}; // 设置传感器状态 dcBuff.sampleData.vacuum[0].staVacuum = VACUUM_STATUS_COMM_FAULT; dcBuff.sampleData.leak.staLeak = LEAK_STATUS_COMM_FAULT; NVIC_SetPriority(EXTI9_5_IRQn, NVIC_EncodePriority(NVIC_GetPriorityGrouping(),5, 0)); NVIC_EnableIRQ(EXTI9_5_IRQn); /* Peripheral clock enable */ LL_AHB2_GRP1_EnableClock(LL_AHB2_GRP1_PERIPH_ADC); /** Common config */ ADC_InitStruct.Resolution = LL_ADC_RESOLUTION_12B; ADC_InitStruct.DataAlignment = LL_ADC_DATA_ALIGN_RIGHT; ADC_InitStruct.LowPowerMode = LL_ADC_LP_AUTOWAIT; LL_ADC_Init(ADC1, &ADC_InitStruct); ADC_REG_InitStruct.TriggerSource = LL_ADC_REG_TRIG_SOFTWARE; ADC_REG_InitStruct.SequencerLength = LL_ADC_REG_SEQ_SCAN_DISABLE; ADC_REG_InitStruct.SequencerDiscont = LL_ADC_REG_SEQ_DISCONT_DISABLE; ADC_REG_InitStruct.ContinuousMode = LL_ADC_REG_CONV_SINGLE; ADC_REG_InitStruct.DMATransfer = LL_ADC_REG_DMA_TRANSFER_NONE; ADC_REG_InitStruct.Overrun = LL_ADC_REG_OVR_DATA_PRESERVED; LL_ADC_REG_Init(ADC1, &ADC_REG_InitStruct); LL_ADC_ConfigOverSamplingRatioShift(ADC1, LL_ADC_OVS_RATIO_16, LL_ADC_OVS_SHIFT_RIGHT_4); LL_ADC_SetOverSamplingDiscont(ADC1, LL_ADC_OVS_REG_CONT); LL_ADC_DisableIT_EOC(ADC1); LL_ADC_DisableIT_EOS(ADC1); LL_ADC_DisableDeepPowerDown(ADC1); LL_ADC_EnableInternalRegulator(ADC1); ADC_CommonInitStruct.CommonClock = LL_ADC_CLOCK_SYNC_PCLK_DIV4; LL_ADC_CommonInit(__LL_ADC_COMMON_INSTANCE(ADC1), &ADC_CommonInitStruct); /** Configure Regular Channel */ LL_ADC_SetChannelSamplingTime(ADC1, LL_ADC_CHANNEL_1, LL_ADC_SAMPLINGTIME_24CYCLES_5); LL_ADC_SetChannelSingleDiff(ADC1, LL_ADC_CHANNEL_1, LL_ADC_SINGLE_ENDED); LL_ADC_SetChannelSamplingTime(ADC1, LL_ADC_CHANNEL_2, LL_ADC_SAMPLINGTIME_24CYCLES_5); LL_ADC_SetChannelSingleDiff(ADC1, LL_ADC_CHANNEL_2, LL_ADC_SINGLE_ENDED); LL_ADC_SetChannelSamplingTime(ADC1, LL_ADC_CHANNEL_3, LL_ADC_SAMPLINGTIME_24CYCLES_5); LL_ADC_SetChannelSingleDiff(ADC1, LL_ADC_CHANNEL_3, LL_ADC_SINGLE_ENDED); LL_ADC_SetChannelSamplingTime(ADC1, LL_ADC_CHANNEL_4, LL_ADC_SAMPLINGTIME_24CYCLES_5); LL_ADC_SetChannelSingleDiff(ADC1, LL_ADC_CHANNEL_4, LL_ADC_SINGLE_ENDED); LL_ADC_SetChannelSamplingTime(ADC1, LL_ADC_CHANNEL_5, LL_ADC_SAMPLINGTIME_24CYCLES_5); LL_ADC_SetChannelSingleDiff(ADC1, LL_ADC_CHANNEL_5, LL_ADC_SINGLE_ENDED); LL_ADC_SetChannelSamplingTime(ADC1, LL_ADC_CHANNEL_6, LL_ADC_SAMPLINGTIME_24CYCLES_5); LL_ADC_SetChannelSingleDiff(ADC1, LL_ADC_CHANNEL_6, LL_ADC_SINGLE_ENDED); LL_ADC_SetChannelSamplingTime(ADC1, LL_ADC_CHANNEL_10, LL_ADC_SAMPLINGTIME_24CYCLES_5); LL_ADC_SetChannelSingleDiff(ADC1, LL_ADC_CHANNEL_10, LL_ADC_SINGLE_ENDED); LL_ADC_SetChannelSamplingTime(ADC1, LL_ADC_CHANNEL_11, LL_ADC_SAMPLINGTIME_24CYCLES_5); LL_ADC_SetChannelSingleDiff(ADC1, LL_ADC_CHANNEL_11, LL_ADC_SINGLE_ENDED); LL_ADC_SetChannelSamplingTime(ADC1, LL_ADC_CHANNEL_12, LL_ADC_SAMPLINGTIME_24CYCLES_5); LL_ADC_SetChannelSingleDiff(ADC1, LL_ADC_CHANNEL_12, LL_ADC_SINGLE_ENDED); LL_ADC_SetChannelSamplingTime(ADC1, LL_ADC_CHANNEL_15, LL_ADC_SAMPLINGTIME_24CYCLES_5); LL_ADC_SetChannelSingleDiff(ADC1, LL_ADC_CHANNEL_15, LL_ADC_SINGLE_ENDED); Sample_ReOpen(); } // 休眠唤醒以后需重新执行该函数 void Sample_ReOpen() { // ADC硬件校验 VCC_SENSOR_5V_ON(); delay_ms(50); LL_ADC_StartCalibration(ADC1, LL_ADC_SINGLE_ENDED); while(LL_ADC_IsCalibrationOnGoing(ADC1)); VCC_SENSOR_5V_OFF(); } void Sample_Task(void *p_arg) { uint16_t adc1, adc2; data_dtu_t dtuSample; data_sample_t sample; uint32_t sample_time; // 每隔8小时测一次真空(上电第一次不测) uint32_t vacuum_seconds = 30, vaccuumTick = 0; uint8_t lastLeakWarning = 0; int16_t i; uint32_t u32Sample; static uint8_t charging = 0; // 记录充装状态 static uint32_t lowest_Sample = 0xFFFFFFFFul; // 记录液位最低点:初值为最大(用于判断充装开始) static uint32_t highest_Sample = 0; // 记录液位最高点:初值为最小(用于判断充装结束) static uint8_t stopGrowCount = 0; // 记录液位停止增长的次数 static uint32_t last_SampleTime = 0; // 记录充装判别的时间(间隔时间不能过短) uint32_t totalSeconds; static uint32_t last_volumePct = 0; // 记录上次的液位 static uint16_t last_Press = 0; static int16_t last_Tempr = -300; static uint16_t last_Vacuum = 0; S_RTC_TIME_DATA_T sRTC; // TTS协议 static uint32_t last_spanPct[20] = {0}; // 记录上次变化量的百分比基数 static uint32_t last_spanTime[20] = {0}; // 记录上次变化量的时间基数 static uint8_t last_spanCount = 0; // 记录条数 uint32_t span; static uint32_t Match_Time = 0; static uint8_t first = 1; uint16_t adDPress_inhibition; // 4~20mA输入差压采集抑制量 static uint16_t last_adDPress = 0; // 记录上一个差压采集值 // 和远气体:紧急切断阀门的输出: 电磁阀默认打开 if(dcBuff.powerInfo.hardVer.major == 231) KZ_VALUE_ENABLE(); while(1) { // 等待采集信号 xSemaphoreTake(Sample_Semaphore, portMAX_DELAY); // 4~20mA输入差压采集抑制量:当前采集值和上一个采集值相差满量程的±6‰范围内,用上一个采集值代替当前值 // adDPress_inhibition = (dcBuff.configSensor.sensorDPress.fullValue - dcBuff.configSensor.sensorDPress.zeroValue) / 166; // // 下一阶段:采集传感器数据 Sample_phase = 1; // 获取当前时间 RTC_GetDateAndTime(&sRTC); // 计算自上次gps定位以来的时间 sample_time = Calc_SecondsFromYear(INITIAL_YEAR, sRTC.u32Year, sRTC.u32Month, sRTC.u32Day, sRTC.u32Hour, sRTC.u32Minute, sRTC.u32Second); // 初始化缓冲区 memset(&sample, 0, sizeof(sample)); memset(&dtuSample, 0, sizeof(dtuSample)); // 设置传感器状态 sample.staExtPress[0].status = SENSOR_STATUS_NOCONNECT; sample.staExtPress[1].status = SENSOR_STATUS_NOCONNECT; sample.staExtPress[2].status = SENSOR_STATUS_NOCONNECT; sample.staExtTempr[0].status = SENSOR_STATUS_NOCONNECT; sample.staExtTempr[1].status = SENSOR_STATUS_NOCONNECT; sample.staExtTempr[2].status = SENSOR_STATUS_NOCONNECT; // Modbus传感器默认为沿用原来的数据 sample.vacuum[0] = dcBuff.sampleData.vacuum[0]; sample.leak = dcBuff.sampleData.leak; sample.flow = dcBuff.sampleData.flow; // 计算理论值 Calculate_Theoretical_Params(); if(!IS_VCC_SENSOR_5V_ON()) { VCC_SENSOR_5V_ON(); osDelay(2000); } printf("\n***\n***\n*** send data ***\n***\n***\n"); modbus_read_data(); osDelay(2000); if(VCC_POWER_STATUS()) { // Modbus采集流量计 //Sensor_ReadFlow(&sample); while(!IsTickOut(modbus_outTick)) osDelay(1); } // // 是否到采集时间(3秒误差) // if(Config_Vacuum_Request || sample_time + 3 >= vacuum_seconds) // { // if(Config_Vacuum_Request) // { // // 强制采集真空计 // Config_Vacuum_Request = 0; // } // else // { // // 下次上传时再采 // vacuum_seconds = sample_time + dcBuff.configData.intervalTrans; // } // // 真空计需要额外延时 // while(vaccuumTick > 0 && !IsTickOut(vaccuumTick)) // osDelay(1); // // 如果不断电,下次采集真空计不用延时 // vaccuumTick = 0; // // 读取真空数据 // Sensor_ReadVacuum(0, &sample); // while(!IsTickOut(modbus_outTick)) // osDelay(1); // if(sample.vacuum[0].staVacuum == VACUUM_STATUS_COMM_FAULT) // { // Sensor_ReadVacuum(0, &sample); // while(!IsTickOut(modbus_outTick)) // osDelay(1); // } // if(sample.vacuum[0].staVacuum == VACUUM_STATUS_COMM_FAULT) // { // Sensor_ReadVacuum(0, &sample); // while(!IsTickOut(modbus_outTick)) // osDelay(1); // } // } // 无外部供电,或者太阳能电池电压低于4.5v //if((!dcBuff.configDisplay.op_LOCAL_DISP_1S && !dcBuff.configDisplay.op_USE_R0SEMOUNT) || !VCC_POWER_STATUS() || (dcBuff.configDisplay.op_USE_SOLAR && dcBuff.dtuData.batVoltage <= 4500)) VCC_SENSOR_5V_OFF(); // 记录上次采集的值 last_volumePct = u32Sample; // 判别充装状态 RTC_GetDateAndTime(&sRTC); totalSeconds = Calc_SecondsFromYear(INITIAL_YEAR, sRTC.u32Year, sRTC.u32Month, sRTC.u32Day, sRTC.u32Hour, sRTC.u32Minute, sRTC.u32Second); if(last_SampleTime == 0 || totalSeconds + 3 >= last_SampleTime + 300) { if(dcBuff.configBottle.measureType == MEASURE_WEIGHT) u32Sample = sample.weight; else if(!dcBuff.configDisplay.op_USE_CAPACITY_SENSOR && !dcBuff.configDisplay.op_USE_HEIGHT_LEVEL && !dcBuff.configDisplay.op_USE_PCT_LEVEL) u32Sample = (uint32_t) KPa2mmH2O(sample.diff); else u32Sample = (uint32_t) sample.height; // 记录判断时间 last_SampleTime = totalSeconds; } if(sample.warnning) printf("\n*** Level warnning ***\n"); // 读取电池电压 if(DS2788_ReadBattery(&dtuSample)) { dcBuff.dtuData.batLow = dtuSample.batLow; dcBuff.dtuData.batCurrent = dtuSample.batCurrent; dcBuff.dtuData.batPct = dtuSample.batPct; dcBuff.dtuData.batCapa = dtuSample.batCapa; dcBuff.dtuData.batMaxCapa = dtuSample.batMaxCapa; dcBuff.dtuData.batTempr = dtuSample.batTempr; dcBuff.dtuData.batVoltage = dtuSample.batVoltage; } // 禁止ADC LL_ADC_Disable(ADC1); // 通知发送任务采集完成 GPRS_semSampled = 1; // 通知显示板采集完成 Config_Sample_Request = 0; // 通知显示屏: 刷新 xSemaphoreGive(Key_Semaphore); //Form_Refresh(); //这个函数未做互斥,有可能冲突 // 刷新电流输出 DAC7311_Refresh(); // /* Get the conversion result */ // if(!dcBuff.configDisplay.op_USE_CAPACITY_SENSOR) // printf("\nConversion result of diff: \t\t%02X, %.1f kPa", sample.staDPress.status, sample.diff); // else // printf("\nConversion result of capa: \t\t%02X, %.1f pF", sample.staDPress.status, sample.diff); //// printf("\nConversion result of press: \t\t%02X, %.2f MPa", sample.staPress.status, (float) sample.pressure / 1000); //// for(i = 0; i < 0; i++) //// printf("\nConversion result of extPress[%d]: \t%02X, %.2f MPa", i, sample.staExtPress[i].status, (float) sample.extPressure[i] / 1000); //// for(i = 0; i < 2; i++) //// printf("\nConversion result of extTempr[%d]: \t%02X, %d ℃", i, sample.staExtTempr[i].status, sample.extTempr[i]); // printf("\nConversion result of height: \t\t%.1f mm", sample.height); //// printf("\nConversion result of volTol: \t\t%u L", sample.volumeTotal); //// printf("\nConversion result of volume: \t\t%u L", sample.volume); // printf("\nConversion result of volPct: \t\t%.2f %%", (float) sample.volumePct / 100); // printf("\nConversion result of charging: \t\t%d", sample.charging); //// printf("\nConversion result of staVacuum: \t%u", sample.vacuum[0].staVacuum); //// printf("\nConversion result of lifeVacuum: \t%u Months", sample.vacuum[0].lifeVacuum); // printf("\nConversion result of vacuum: \t\t%.2f Pa", sample.vacuum[0].vacuum); //// printf("\nConversion result of rateVacuum: \t%.2f Pa.M3/s", sample.vacuum[0].rateVacuum); //// printf("\nConversion result of typeLeak: \t\t%u", sample.leak.typeLeak); //// printf("\nConversion result of staLeak: \t\t%u", sample.leak.staLeak); // printf("\nConversion result of concentrations: \t%u %%", sample.leak.concentrations); printf("\n"); if(first) { first = 0; // 马上采集真空数据 Config_Vacuum_Request = 1; // 发送消息给任务 xSemaphoreGive(Sample_Semaphore); } // 采集结束 Sample_phase = 0; } } void Match_Task(void *p_arg) { uint8_t fail_count = 0; while(1) { // 等待匹配信号 xSemaphoreTake(Match_Semaphore, portMAX_DELAY); RF_PowerOn(); Truck_Matched = rf_charge_match(Match_Charging); if(Truck_Matched) { fail_count = 0; Truck_Charging = Match_Charging; if(!Truck_Charging) Manual_Charing = 0; } else { if(++fail_count >= 3) { fail_count = 0; Manual_Charing = 0; } } RF_PowerOff(); if(!Manual_Charing) { printf("********* Manual_Charing = 0 ****\r\n"); // 恢复初始状态 Truck_Matched = 0; Truck_Charging = 0; } } }